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SUMMARY 
The lattice gas model for simulating two-phase flow, proposed by Appert and Zaleski, has been modified by the 
introduction of gravitational interactions and the new model has been used to simulate standing wave pattems on 
the free surface of a fluid. The results compare well with linear theory. 
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1. INTRODUCTION 

I .  1. Lattice gas modelling 

In recent years lattice gas models have been used to model a variety of fluid phenomena such as flow 
round plates’ and also more complicated simulations involving two or more fluids such as the Kelvin- 
Helmholtz instabilig and the combustion of two gases to produce a third.3 

Although less well developed than techniques such as finite difference and Iinite element solutions 
of the Navier-Stokes equation, the lattice gas approach has inherent advantages in the solution of 
complex phenomena such as wave motion through media with density gradients and in simulations 
where mixing or phase changes may occur. 

The lattice gas model was first introduced by Frisch, Hasslacher and Pomeau (FHP).4 Their 
formulation is the basis for the model used in our simulations and is described below. The FHP model 
consists of an ensemble of fluid ‘particles’ which move on an underlying hexagonal grid. Each particle 
moves along one of the six link directions d, (a = 1,.  . . ,6), where the direction d, is given by 
cos(na/3 - n/6)i + sin(na/3 - x/6)j, as shown in Figure 1. The particles travel at unit speed, moving 
from one intersection point or site to a neighbouring site in each time step. Only one particle can travel 
along any one link at any time. At the end of each time step all the particles coming into a particular 
site are allowed to collide in such a way that the momenhun and number of particles at that site are 
conserved. Particles then move off in their new directions at the beginning of the next time step. The 
general lattice gas model can be expanded to allow any number of rest particles to be present at each of 
the sites (do). In the following simulations the FHPIII model is used, which allows a maximum of one 
rest particle at each site. 

The basic FHP collisions’ are shown in Figure 2, where the left-hand column shows the incoming 
configurations and the righ-hand column shows the possible outcomes. Rest particles are represented 
by a solid sphere. When there is more than one possible outcome, one of these is selected at random. 
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Figure I .  The six directions of the hexagonal lattice 

The FHPIII collision rules are formed from the basic collisions, the basic collisions with a spectator 
particle (moving or at rest) and the dual of these collisions formed by swapping particles and empty 
links. Free slip conditions can be produced at a solid boundary by flipping all incoming particles in 
such a way that the particle momentum parallel to the boundary is conserved and the particle 
momentum perpendicular to the boundary is reversed! Thus a particle approaching a horizontal free 
slip boundary along link d6, see Figure 1 (travelling towards the site), will leave the site travelling 
along link dl . Macroscopic fluid quantities such as velocity and density can be found by averaging the 
microscopic quantities over a cell typically no smaller than 16 sites by 16 sites.’ 

It can be s h o ~ n ~ * ~  that for the FHPIII model the macroscopic collision rules .satis@ the equations 
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Figure 2. The basic FHP collision mles 
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where p is the density, P is the pressure, d is the density per link, d = p / 7 ,  v is the bulk viscosity and 
g(d) = 7( 1 - 2d)/ 12( 1 - d). These are the continuity equation and the Navier-Stokes equation with 
an extra factor g. The Navier-Stokes equation can be recovered by rescaling time, pressure and 
viscosity by g:  t‘ + tg, P --f P/g ,  v’ + v /g .  

1.2. Gmvitational interactions 

Gravitational interactions can be simulated by flipping a small number of particles after the collision 
from link dl to d3 and from link d6 to d4, provided that there is not already a particle travelling in that 
direction. This interaction was introduced into the FHP model by allowing particles to be flipped every 
time step. The gravitational interaction is performed &r the particles have collided and has the effect 
of decreasing the momentum in the y-direction while leaving the momentum in the x-direction 
unchanged. This interaction produces a density Merit across the fluid; however, this will not be 
particularly large provided that the number of gravitational interactions is small.6 Here we restrict the 
number of such flips to be 0.5% of the total number of flips. This gives an average of 2.5 x flips 
per site per time step. This is significantly smaller than the number df FHP collisions taking place: in a 
25,000-time-step simulation there will only be on average 62.5 gravity flips perfomed at each site 
compared with an average of 15,000 FHP collisions.’ 

1.3 Liquid-gas model 

A liquid-gas (LG) model is a lattice gas model which undergoes a phase separation producing 
separate light and dense phases. Thls phase separation is produced using interaction rules which were 
first introduced by Appert and Z a l e ~ k i ~ ’ ~  and are shown in Figure 3. The interaction operates on two 
sites a distance IL apart in one of the directions d, ,  d2 or d3 (Figure 3 shows the interaction rules acting 
in the direction d2). Particles travelling along the links represented by the full arrows are flipped into 
the directions shown by the broken arrows provided that there are p@ticles in both the initial links and 
no particles in either of the destination links. These interactioh rules clearly conserve overall 
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Figure 3. The long-range interaction 
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momentum, although they do not conserve the momentum at each site. The value of IL used in the 
following simulations was three lattice units. 

1.4. Implementation of the model 

the different interactions described above being implemented in the following order: 
The model was implemented on the Connection Machine (CM) 200 at The University of Edinburgh, 

(1) FHPIII collision rules 
(2) gravitational interactions 
(3) interaction (a) in direction (i), direction (ii), then direction (iii) 
(4) interaction (b) in direction (i), direction (ii), then direction (iii) 
(5) interaction (c) in direction (i), direction (ii), then direction (iii) 
(6) interactions (d) and (e) combined in direction (i), direction (ii), then direction (iii). 

where directions (i), (ii) and (iii) are a random ordering of d , ,  d2 and d3, the ordering being different for 
each of the four implementations (3H6) above. Interactions (d) and (e) are combined to prevent a net 
clockwise or anticlochse rotation being imposed on the fluid. 

1.5. Numerical modelling 

One of the main advantages of the FHP model is its simplicity. 

1. The state of the particles on the lattice need only be known at discrete time intervals. There is no 
need to track the particles when they are moving from one site to a neighbouring site. 

2. The state of each site at any time step can be expressed as a 7 bit integer, one bit for each link 
taking the value 1 or 0 in the presence or absence of a particle on the link. 

3. The FHP collisions can be implemented using a look-up table taking the initial particle 
configuration at the site (an integer in the range 0-1 27) and returning the new configuration after 
the collision. This removes the need to calculate the outcome of each collision. 

4. Updating the lattice between time steps requires only a knowledge of the particle states at each of 
the six neighbouring sites. This is done by shifting the lattice in each of the six link directions. 

When introducing the new interactions, it is important to try and keep the underlying simplicity of 
the FHP model. The gravitational interaction is perfomed by first selecting all the sites where the 
interaction can take place and then selecting a percentage (we used 0.5%) of these at which the 
interaction is allowed to take place. The interaction can be modelled using simple addition and 
subtraction: a particle being flipped from link 1 (integer value 2') to link 3 (integer value Z3) results in 
23 - 2' being added to the integer representing the particles at the site. In practice it was found best to 
consider the two possible gravity flips (dl  -+ d3 and d6 -+ d4) separately. 

In principle the Appert and Zaleski interactions can be implemented simply by first shifting the 
world U, units in the chosen direction and comparing the shifted configuration with the original 
configuration to see whether an interaction can take place. If an interaction can take place, this is done 
again using simple arithmetic, to the shifted lattice. Finally the grid is shifted back to its original 
position and the inverse arithmetic operation applied. Thus, for example, if interaction (a) of Figure 3 
is to be applied to the sites (1, 1) and (1, 4), then site (1, 1) is first shifted three units to the right to 
position (1, 4). The two grids are then considered at the point (1, 4) to see whether the interaction can 
take place. This can only happen if bit5 = 1 and bit2 = 0 on the shifted grid and bit5 = 0 and bit2 = 1 
on the original grid. The integer 25 - 22 is then subtracted from the integer representation at the point 
(1, 4) on the shifted grid. The altered point (1, 4) is then shifted back to its original position (1, 1) and 
finally 25 - 22 must be added to the integer representing the point (1, 4). This is done in parallel to all 
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points on the grid at the same time. If no interaction can take place, the integers at the points (1. 1) and 
(1,4) remain unchanged. They may, however, be changed by one of the subsequent interactions. 

The implementation of this interaction is complicated slightly by the need to randomize the order in 
which the interactions ( a x e )  are performed and also the order in which each interaction is perfomed 
along the three possible directions. 

2. STANDING WAVE SIMULATIONS 

The modified LG model was used to simulate standing waves on a 4096 x 256 grid. Continuous 
boundary conditions were used, with a solid free slip boundary placed at the bottom of the grid. 
Initially a standing wave was set up with wavelength 4096 units and depth 180 units. This was done by 
first allowing the fluid to settle, with a horizontal interface between the two phases at the mean water 
level (MWL). Area A shown in Figure 4 was then filled with stationary fluid of the same density as the 
fluid just below the MWL, while areas B were filled with stationary fluid of the same density as the 
fluid just above the MWL. The standing wave was then allowed to oscillate under the effect of the 
gravitational interactions. This was repeated six times, starting from the same initial conditions but 
using a different set of random numbers during the simulations. The velocity results shown below are 
averaged over the six simulations. 

3. RESULTS AND DISCUSSION 

The wave height at its centre was measured every 40 time steps; this is shown in Figure 5 for one of the 
six simulations along with the best-fit curve of the form A e P  cos(2nrlr + $) + h, where A = 15.0, 
a=5-16 x 10-’,~=10,1OO,JI= -0~139andh=165,allinunitsoftimestepsandlatticelengths. 
Although it is possible to initialize a wave with a density gradient which is a good approximation to its 
natural gradient, there will always be a short initial period during which the wave readjusts itself. The 
variable $ is added to account for this and to allow for the wave not starting to oscillate at r = 0 from 
exactly the start of a period. It can be seen from the best-fit data that $ is equivalent to approximately 
200 time steps. The velocity field under the standing wave at r = 3000 time steps is shown in Figure 
6(a). This can be compared with Figure 6(b) which shows the corresponding velocities computed for a 
wave with the same depth-to-wavelength ratio at time r = r/4 using the linear wave theory equations’ 

where h is the mean water depth and y is measured vertically upwards from the mean free surface. The 
plots in Figure 6(a) are in lattice units; the plots in Figure 6(b) have been normalized so that the peak x- 
velocity at the surface corresponds in magnitude to that found from the model. The linear theory y- 
velocities were normalized by the same factor. Figure 6 shows a vector plot of the velocities, Figure 7 

I I 

Figure 4. The construction of a standmg wave from a flat surface. Note that this figure is not drawn to scale. The wave is in fact 
very shallow, with an amplitude of about 15 units and a wavelength of 4096 units 



318 J. BUlCK, W. EASSON AND C. GREATED 

170 I I 1 I 
0'1OD 1.10' 2'10' 3'10' 

t (time-steps) 

Figure 5. The height of the wave centre for one of the six runs plotted against time and the best-fit curve 
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Figure 6. (a) Velocity vector plot. (b) Velocity vector plot from linear wave theory 

Figure 7. (a) *-Velocity profile. (b) *-Velocity profile from linear wave theory 
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Figure 8. (a) x-Velocity contour plot. @) x-Velocity contour map from linear wave theory 
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Figure 9. (a) y-Velocity profile. @) pvelocity profile from linear wave theory 

shows the x-velocity profile across the phase of the wave at different heights b), Figure 8 shows a 
contour plot of the x-velocity and Figure 9 shows the y-velocity profile. In Figures 7(a) and 9(a) the 
symbols are the experimental data points and the full curves are groduced by filtering out the noise 
with a Fourier filter. It can be seen from Figures 7(a) and 9(a) that the y-velocities are significantly 
smaller than the x-velocities and the signal-to-noise ratio for the y-velocity is small. This causes a 
contour plot of the y-velocities to be particularly noisy and of little interest. 

The results obtained compare well with the linear theory, except fbr two obvious differences. Firstly, 
the x-velocity decreases with the distance below the surface faster than predicted by the theory; this can 
be seen best when comparing figures 7(a) and 7(b). Secondly, the ratio of x-velocity to y-velocity is 
slightly larger than predicted by linear theory. The x-velocities from linear theory were scaled so that 
their magnitude would be as close as possible to the computed x-velocities; when the y-velocities are 
scaled by the same factor, the computed y-velocities are found to be smaller by a factor of about 0.8. 
Both differences are consistent with the simulated wave having an altered depth-to-wavelength ratio. 
The main cause of this effect is found to be the density gradient which is produced across the fluid by 
the gravitational interactions. This change in density with depth, which is not present in the linear 
theory, is seen to have the effect of changing the apparent depth of the fluid. The ratio of the real depth 
to the apparent depth can be accounted for in any simulation, since it is found to depend solely on the 
strength of the gravitational interaction. The strength of the gravitational interaction used here has the 
effect of causing the fluid to appear approximately twice its actual depth. Another factor which changes 
the depth of the fluid is the fact that the long-range interactions do not act at the bottom boundary. This 
affects the density of the fluid at the bottom three or four sites, which will change the effective depth 
only slightly, but significantly since we are dealing with shallow water waves. It is necessary that the 
long-range interaction does not act at the boundary to prevent particles becoming trapped in the 
boundary. 
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To investigate the effect of grid size on the model, another wave was initialized on a 2048 x 128 
grid with a wavelength of 2048 lattice units and an MWL of 91 lattice units. The period of this wave 
was found to be 7423 time steps. This wave has half the wavelength and approximately half the depth 
of the wave already discussed. We can now compare the Reynolds numbers of the two waves: the 
Reynolds number is given by 

where L and U are characteristic lengths and velocities respectively of the simulation and v/g(d) is the 
scaled viscosity (see Section 1. l), which will be the same for both waves since the density is the same. 
In this comparison we will use a subscript ‘1’ for the shorter wave and subscript ‘2’ for the longer 
wave. For surface waves, Froude scaling applies with 7 2 / ~ 1  = J ( A 2 / A , ) ;  in this case z2 = 

Comparing the ratio of the periods of the two waves, we see that r I  /z2 = 1 a46 % 4 2  to within 3%. 
The characteristic velocity is taken to be the peak x-velocity of an undamped wave. This is given by 

U = v,(x = A/4, y = 0, t = r/4) exp(ar/4). 

The factor exp(ar/4) compensates for the damping which occurs during the first quarter-period and is 
required because the velocity is damped at different rates for different waves. Using this characteristic 
velocity, we get U1/U2 = 0.75 % J f  to within 6%, which is as expected since Ui cx 7;’. Thus, 
comparing Reynolds numbers Re, = Rez, we see that doubling the size of the wave has reduced the 
effective viscosity by a factor of J2. 

A calculation of the Reynolds number requires the values of the scaling constant g(d) and the 
viscosity v. These have been found experimentally, but their measurement is beyond the scope of this 
paper. The values obtained for g(d) and v are 0.6 and 20 respectively, where both values are in lattice 
units. This gives a Reynolds number of about 10. The high viscosity present in the model is the main 
restraint on the Reynolds number which can be achieved. This is a common feature of lattice gas 
simulations which is increased in this model by the introduction of the additional interactions. 

10 

4. CONCLUSIONS 

The close comparison between the results obtained and the linear theory suggests that an LG model is 
suitable for modelling surface waves. The waves produced are clearly highly viscous, which is one of 
the features of a lattice gas model. The viscous effect can be reduced by using a larger grid and 
increasing the wavelength of the wave. It may also be possible to alter the fluid density by changing the 
long-range interaction rules, which would change the viscosity of the model. 
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